A Halanay–type Inequality on Time Scales in Higher Dimensional Spaces
نویسندگان
چکیده
In this paper, we investigate a certain class of Halanay-type inequalities on time scales in higher dimensional spaces. By means of the obtained inequality, we derive some new global stability conditions for linear delay dynamic systems on time scales. An example is given to illustrate the results. Mathematics subject classification (2010): 34K11, 39A10, 39A99.
منابع مشابه
Some new variants of interval-valued Gronwall type inequalities on time scales
By using an efficient partial order and concept of gH-differentiability oninterval-valued functions, we investigate some new variants of Gronwall typeinequalities on time scales, which provide explicit bounds on unknownfunctions. Our results not only unify and extend some continuousinequalities, but also in discrete case, all are new.
متن کاملGronwall-OuIang-Type Integral Inequalities on Time Scales
OuIang inequalities and their generalizations have proved to be useful tools in oscillation theory, boundedness theory, stability theory, and other applications of differential and difference equations. A nice introduction to continuous and discrete OuIang inequalities can be found in 1, 2 , and studies in 3–5 give some of their generalizations to multiple integrals and higher-dimensional space...
متن کاملApplication of Halanay Inequality to the Stability of the Disease Free Equilibrium of a Delayed Malaria Transmission Model
By the applications of Halanay type inequality and the theory of nonsingular M-matrix, the global asymptotical stability of the disease free equilibrium of a delayed malaria transmission model is obtained when the basic reproduction number of the model is less than 1.
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کامل